CULTIVO DE MORERA
(Morus spp) Y SU USO EN LA
ALIMENTACIÓN ANIMAL
CULTIVO DE MORERA
(Morus spp) Y SU USO EN LA
ALIMENTACIÓN ANIMAL

Elaborado por:
Ing. Álvaro Castro Ramírez MSc.
Ing. Edwin Orozco Barrantes

San José, Costa Rica
2011
CULTIVO DE MORERA (Morus spp) Y SU USO EN LA ALIMENTACIÓN ANIMAL

INDICE

PRESENTACIÓN .. 7

INTRODUCCIÓN .. 8

RECURSOS GENÉTICOS ... 10

Origen, descripción botánica y clasificación ... 10
Variedad Criolla ... 10
Variedad Brasil o Carla Liliana .. 11
Variedad Indonesia o Célebes ... 11
Variedad Kairyo-Nezumigaeshi ... 12
Variedad Etiopía o Cubana .. 12

CONDICIONES AGROECOLÓGICAS .. 13

Clima ... 13
Suelos ... 13

ESTABLECIMIENTO Y MANEJO DE UNA PLANTACIÓN DE MORERA 15

Métodos de propagación de la morera ... 15
 Propagación sexual o por semilla .. 15
 Propagación vegetativa por estacas .. 15
 Propagación vegetativa por acodo .. 16

Distancias de siembra .. 17

Poda .. 18
 Poda de formación ... 18
 Poda de cosecha y mantenimiento .. 19
 Poda de rejuvenecimiento o de cepo .. 19

ESTADOS FISIOLÓGICOS DE CRECIMIENTO DE LA MORERA
Y Efecto de la fertilización ... 20

FERTILIZACIÓN ... 22

Funciones de los fertilizantes .. 22
Tipos de fertilización ... 24
 Fertilización química al suelo ... 24
CULTIVO DE MORERA (Morus spp) Y SU USO EN LA ALIMENTACIÓN ANIMAL

Fertilización orgánica y manejo del suelo ... 25
Fertilización foliar ... 28

Dosis de fertilizante foliar a usar .. 29

CONTROL DE MALEZAS ... 31

PRODUCCIÓN DE BIOMASA .. 32
Efecto de la frecuencia de poda sobre la calidad de la biomasa de la Morera 32
Efecto de la altura de corte sobre la producción de biomasa de la morera 32
Rendimientos de la morera ... 32

PLAGAS Y ENFERMEDADES DEL CULTIVO MORERA .. 33

MANEJO DE LA MORERA PARA ALIMENTACIÓN ANIMAL 34

VALOR NUTRITIVO DE LA MORERA .. 36
Comparación de la morera con otras especies forrajeras 36

UTILIZACIÓN DE LA MORERA EN LA PRODUCCIÓN ANIMAL 38
Rumiantes .. 38
Morera en alimentación de animales productores de leche 38
Morera en la alimentación de animales de carne .. 39
Morera en la alimentación de monogástricos ... 40

ENSILAJE DE MORERA ... 41

BIBLIOGRAFÍA .. 42
PRESENTACIÓN

Durante años la morera ha sido utilizada como fuente alimenticia para varias especies de animales domésticos de importancia económica en muchas partes del mundo. En Costa Rica se ha utilizado mayormente en la alimentación de especies menores y en pequeña escala, ya que las explotaciones de este tipo no sobrepasan en promedio hatos de 20 animales.

Su difusión ha sido restringida ya que los productores que mayormente la utilizan se ubican generalmente en la Meseta Central de nuestro país y son aquellos que se dedican a producir leche y carne con cabras o conejos. Ellos han sabido explotar las características de estas plantas obteniendo altos valores de producción y calidad de su biomasa, lo que les ha permitido producir con elevados índices de eficiencia.

Una característica importante de estos sistemas de explotación es que son intensivos y la morera ha demostrado que puede ser un aliado importante para ese tipo de productores que están dispuestos a trabajar fuertemente para producir en sus fincas los alimentos que necesitan sus animales.

Dado que la tendencia de costos de producción en las explotaciones pecuarias actualmente es hacia la alza, la estrategia para contrarrestarla es producir los alimentos en las fincas. Éstos, conjuntamente con el riego y la conservación de forrajes son los aspectos más importantes, desde el punto de vista de alimentación, que deben de tomar en cuenta los productores actualmente para competir en un mundo cada vez más globalizado.

Se trata ahora de difundir la utilización de la morera a grandes escalas en explotaciones pecuarias, en donde las áreas sembradas por finca produzcan al menos la mitad de la comida necesaria de acuerdo a las estrategias de alimentación particulares de cada finca.

Este manual pretende poner a disposición de los productores la tecnología necesaria para lograr eso y además pretende motivarlos para que en el menor plazo posible sean productores de avanzada ante los retos que plantea el futuro.
INTRODUCCIÓN

Los alimentos concentrados para la producción animal sufren aumentos constantes de precios debido fundamentalmente a que las materias primas como el maíz y la soya son cada vez más utilizados en la producción de combustibles, lo que hace que en los mercados internacionales estos granos se coticen a mayor precio. Por lo tanto, siempre será más barato producir los alimentos en las fincas que comprarlos.

La sostenibilidad de los sistemas pecuarios, así como su rentabilidad, estarán basados en los siguientes preceptos: cambio de actitud de los ganaderos hacia una producción más intensiva, producción de forrajes de alta calidad en bancos forrajeros, manejo eficiente de los pastos de piso, utilización eficiente tanto del riego como de la fertilización, conservación de forrajes y por último, sustitución de concentrados por alimentos producidos en la propia finca. Todo esto conlleva a que la actividad alcance mayor eficiencia por hectárea.

Contraria a la visión que se ha tenido sobre nuestro país, hoy en día Costa Rica se presenta ante el mundo con la imagen de un país donde se preserva la vegetación, existiendo cada vez más sistemas silvopastoriles y agroforestales para la producción ganadera que permiten la mitigación de gases de efecto invernadero.

Una hectárea de morera conteniendo 25 000 plantas, las cuales son cosechadas cada tres meses para usarlas en la alimentación animal, produce 120 toneladas de biomasa forrajera por año. Esa hectárea fija el equivalente a 60 toneladas de dióxido de carbono (CO2).

Esa cantidad es equivalente a la que captura un bosque de 25 hectáreas, ya que la máxima cantidad de árboles distribuidos en una hectárea es de 1000 árboles maduros, los cuales entran en equilibrio, de manera que no producen mayor acumulación de dióxido de carbono. (Castro 2005).

La visión renovada de la ganadería bajo el enfoque de agrocadena, permite analizar las amenazas en cada eslabón, permitiendo de esa manera identificar aquellos temas que requieren investigación continua, los cuales mediante el planteamiento de soluciones directas, lograrán mejorar sus indicadores productivos y que unido a estudios de mercados y sistemas de información, permitirán aprovechar las oportunidades que pondrán al país en mejores condiciones de competitividad.

En la actualidad debe ponerse mayor atención a la demanda de productos pecuarios de buena calidad, razón por la cual el consumidor se convierte en el motor de todo el aparato productivo. Para el eslabón de producción en finca, uno de sus objetivos debe ser el de beneficiar a los consumidores con la oferta de productos limpios. Esto se logra utilizando en la alimentación de los animales forrajes de alta calidad.

Para los productores pecuarios es importante interiorizar el concepto de que “la prosperidad pecuaria se crea, no se hereda y el éxito depende de su capacidad para adoptar las innovaciones y adaptarse a los constantes cambios”.
La urgente necesidad del uso de forrajes de alta calidad en los procesos de producción pecuaria debe llevar tanto a productores como profesionales a poner sus ojos en el uso de la morera como una alternativa más para obtener altas producciones.

La morera es una planta que procede de China e India y por sus cualidades nutritivas se compara con los cereales, pudiendo perfectamente sustituir a los concentrados.
RECURSOS GENÉTICOS

2.1 Origen, descripción botánica y clasificación

La morera es una planta originaria de Asia de las regiones del Himalaya, China e India en donde se encuentra la mayor biodiversidad de este género ya que se registran 950 especies y cientos de variedades (Soria et al. 2001).

Pertenece a la clase Dicotiledónea, subclase Urticales, familia Moraceae, género Morus, con varias especies entre las cuales se encuentran: M. alba, M. nigra, M. indica, M. bombycis entre otras. El género comprende arbustos y árboles de porte medio, sin espinas, que producen látex y se encuentran distribuidas alrededor del mundo.

Se introduce a Costa Rica hacia principios del siglo veinte y se inicia su estudio por los años setenta, en el programa de sericultura del Ministerio de Agricultura y Ganadería ubicado en Atenas, provincia de Alajuela, en donde se trabajó con cuatro variedades, a saber la local denominada Criolla, la Brasil, Indonesia y Kairyo-Nezumigaeschi (Kai-Nezu) (Rodríguez 1978). En la década de los ochenta se introdujo para su estudio en la sección de producción animal de la Estación Experimental El Alto, del Ministerio de Agricultura y Ganadería, ubicada en el Alto de Ochomogo.

Posteriormente pasó al Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) en Turrialba y a la Estación Experimental Alfredo Volio Mata de la Universidad de Costa Rica en el Alto de Ochomogo, en donde se realizaron una importante cantidad de investigaciones. En los años siguientes se fomentó su utilización entre las explotaciones caprinas de la meseta central.

2.1.1 Variedad Criolla.

Rodríguez (1978), indica que esta variedad fue introducida al país en el año 1921 procedente de Guatemala, a donde había llegado de Libano. Pertenece al género y especie Morus alba L, la cual se caracteriza por presentar hojas grandes y delgadas, de 11 a 36 cm de largo por 9 a 23 cm de ancho. Es de forma ovalada con ápice terminado en punta, borde aserrado, con una superficie ligeramente corrugada, de color verde claro en los crecimientos nuevos y verde oscuro en las hojas maduras.
Los entrenudos son largos y de bajo número de hojas por rama que es compensado por el gran tamaño de éstas. El número de ramas emitidas después de la poda varía entre tres y seis y no se presta para cosecha mecanizada porque sus ramas no son erectas. Se poda a 30 cm. sobre el nivel del suelo. Se propaga fácilmente por estaca y enraiza en un 75%.

2.1.2. Variedad Brasil o Carla Liliana

Esta variedad fue introducida a Costa Rica por el Agrónomo Enrique Hine O’Leary, aproximadamente en el año 1957 con el nombre Carla Liliana (Rodríguez 1978).

Es una variedad clonal que posee entrenudos cortos. Produce frutos compuestos, moras de sabor agradable y dulce. Sus hojas son de tamaño mediano, de color verde oscuro intenso.

Se propaga por semilla, acodo e injerto. Pero se hace más fácilmente por estacas, enraizando en condiciones de humedad adecuadas hasta en un 80%. Su sistema radical es muy desarrollado, vigoroso y profundo y por sus características de crecimiento erecto se presta para la cosecha mecanizada.

2.1.3. Variedad Indonesia o Célebes

Variedad nativa de Indonesia, introducida al país en el año 1975 por el Ingeniero Manuel Rodríguez Espinoza, del Programa de Sericultura del Ministerio de Agricultura y Ganadería, procedente de Japón, donde ha demostrado ser una de las mejores para la cosecha mecanizada (Rodríguez 1978).

Dentro de sus características sobresalientes, destacan su gran capacidad de enraizamiento. Su número de brotes después del corte varía entre 8 y 18, con un crecimiento rápido en forma erecta, aún bajo condiciones de verano (Rodríguez 1978).

Sus hojas son delgadas, de color verde oscuro intenso, con borde aserrado y el limbo mide de 6 a 13 cm de largo por 4 a 10 cm. de ancho. Produce semilla abundante de una fruta pequeña de color morado oscuro y sabor dulce. Se propaga por semilla, estaca, acodo e injerto. Su sistema radical es muy desarrollado, vigoroso y profundo y por sus
2.1.4. Variedad Kairyo-Nezumigaeshi

Esta variedad es una de las más cultivadas en Japón, por sus características de resistencia a las heladas y por la calidad de sus hojas. Su propagación se hace por semilla, injerto o acodo. Sus hojas son de lámina gruesa que al madurar se tornan duras, bordes dentados, con pequeñas estípulas, con una cutícula serosa en la epidermis superior (Rodríguez 1978).

2.1.5. Variedad Etiopía o Cubana

Esta variedad se introdujo a Costa Rica desde Cuba, la cual procedía de Etiopía (Benavides 2000). En el año 2006 el Ing. Álvaro Castro, del MAG, trajo al país semilla desde Panamá de esta misma variedad.

Se caracteriza por ser de crecimiento rápido, con un sistema radical fuerte, profuso y de brotes foliares vigorosos. De crecimiento erecto, lo que permite la mecanización, produce más de 10 rebrotes después de cada corte y sus hojas son grandes.

3.1. Clima

La morera es una especie que se adapta a las más variadas condiciones, ya que puede desarrollarse entre 50º de latitud Norte y 35º de latitud Sur, es decir tiene la capacidad de crecer bien en las zonas templadas y tropicales (Soria et al. 2001).

Se reportan buenos crecimientos con temperaturas que oscilen de 13 a 38 ºC, siendo el rango entre 22 y 26 ºC el óptimo para su desarrollo. Asimismo, con precipitaciones entre 600 y 2500 mm, con un fotoperíodo de 9 a 13 horas/día, una humedad relativa de 65 a 80 % y una altitud desde el nivel del mar hasta 4000 msnm, se reportan muy buenos rendimientos. (Soria et al. 2001).

3.2. Suelos

Es una especie que se adapta a condiciones edáficas variables, pero prefiere suelos de textura media como los franco-arcillosos, francos o franco-arenoso, con estructuras de tipo granular, ya que tiene un sistema radicular profundo en donde sus raíces llegan a alcanzar más de 6 metros. Esta característica la hace capaz de utilizar los nutrientes del subsuelo (Ting-Zing et al. 1988).

Siempre se consideró a la morera como una planta altamente extractora de nutrientes del suelo, sin embargo debido a las grandes profundidades que alcanzan sus raíces, se ha demostrado que no perjudica las condiciones de fertilidad del suelo, esto se determinó mediante un estudio de suelos que se realizó en la Estación Experimental El Alto del MAG desde el año 1991 hasta el año 2004. (Castro 2005).

Los suelos deben tener también un buen drenaje porque esta especie no resiste las condiciones de encharcamiento, pero al mismo tiempo exige que tengan buena retención de humedad con un 50 a un 60 % y un contenido de materia orgánica entre 2 y 3 % (Ting-Zing et al. 1988).

La capacidad de retención de humedad del suelo está estrechamente relacionada con su textura. En un suelo muy arenoso con baja posibilidad de retención de humedad, se debe regar más regularmente, a efecto de que no disminuya la producción así como la calidad del forraje (Ting-Zing et al. 1988).

El pH del suelo es una propiedad importante para el cultivo de la morera, siendo el rango de valores óptimo para su crecimiento, aquellos que fluctúen entre 6,5 y 7,0. Rodríguez 1978, menciona al igual que otros autores que el principal efecto pernicioso de la acidez del suelo es la toxicidad del aluminio, ya que afecta las funciones biológicas de las raíces.
Por tanto, es fundamental realizar un análisis de suelo antes de proceder a sembrar la morera, ya que si el suelo tiene un pH ácido (menor a 6,5), lo más adecuado sería buscar la recomendación de un profesional que le indique como proceder a realizar un encauzado, para lograr una disminución del aluminio y con ello favorecer el desarrollo de la planta. Esta decisión podría aumentar la rentabilidad de la finca, pues la producción de biomasa de la morera aumenta (Rodríguez 1978).

Con relación al relieve de los suelos, está plenamente demostrado que aquellos que se encuentran con menos de 20 % de pendiente son los óptimos para el establecimiento de este cultivo. Sin embargo en suelos con más pendiente, lo aconsejable es la construcción de terrazas sobre la base de curvas de nivel, introduciendo el cultivo de maní forrajero (Arachis pintoi) para evitar la pérdida de suelo y nutrientes por escorrorentía (Castro 2005).
4.1. MÉTODOS DE PROPAGACIÓN DE LA MORERA

4.1.1. Propagación sexual o por semilla

La morera se propaga tanto por semilla sexual como por semilla vegetativa (estacas, acodos y yemas).

La propagación con semilla sexual permite la obtención de plantas con mayor resistencia a enfermedades y mayor longevidad, con más desarrollo de la raíz pivotante, así como también, un número elevado de plantas en el almácigo para transplante. En promedio 1 gramo de semilla sexual permite producir 1200 plantas.

Si las semillas se siembran la primera semana después de ser colectadas en eras, germinan del 90 al 100 % en un lapso de seis a ocho días. Luego de 60 días de crecimiento, se pueden transplantar a raíz desnuda directamente al campo escogido, el cual debe de estar debidamente preparado. La propagación de la morera por este medio tiene la desventaja de que existe segregación del material, lo que produce poca uniformidad de las plantas obtenidas y un alto costo de su establecimiento ya que deben crecer en un vivero (Rodríguez 1978).

4.1.2. Propagación vegetativa por estacas

Es la más utilizada por ser la más fácil, rápida, práctica y económica. La escogencia del material se hace de plantas cuyas ramas tengan más de 6 meses de edad del rebrote, con uno o dos centímetros de grosor, entre 40 y 50 centímetros de largo y con cuatro yemas.

Dicho material debe tener una coloración grisácea y que se haya lignificado, condición que pre- viene el pudrimiento del material vegetativo y un alto porcentaje de prendimiento o de rebrote. Las yemas deben encontrarse lo suficientemente desarrolladas, para conseguir un mayor porcentaje de germinación en el menor tiempo.

El corte de las estacas debe ser en sentido contrario a la ubicación de la yema para evitar que
el agua de lluvia descienda sobre ésta y provoque su pudrición. Los cortes se realizarán a una separación de uno o dos centímetros de la yema, utilizando un machete o tijeras de podar, procurando un corte de 45° grados para crear una mayor superficie de lesión que ofrece mayor área de exposición del floema y garantiza una rápida aparición de raíces. La siembra debe realizarse el mismo día del corte de las estacas, para evitar la pérdida de vitalidad del material vegetativo.

Los primeros brotes después de sembradas las estacas ocurren a los 14 días de la siembra y a los 26 días se puede evaluar el porcentaje de prendimiento de las estacas. Las plantas provenientes de semilla vegetativa, desarrollan raíces adventicias, las cuales profundizan menos en el suelo.

Se recomienda descortezar o pelar la base de la estaca que se va a sembrar unos cinco centímetros. Tanto los cortes a bisel como el pelado crean una mayor superficie de exposición lo que garantiza una rápida aparición de raíces. Cortes rectos no representan una práctica adecuada, porque reduce la efectividad del prendimiento de los materiales.

4.1.3. Propagación vegetativa por acodo

El acodo es el método por el cual se induce la emisión de raíces en las ramas de la planta. El procedimiento consiste en seleccionar ramas maduras de plantas vigorosas, preferiblemente al final del verano cuando la planta aún no ha emitido brotes nuevos para lo cual se procede a hacerles dos cortes no muy profundos distanciados unos cinco centímetros uno del otro para poder quitar la corteza formando así un anillo y luego se pone un puñado de aserrín humedecido alrededor del corte, el cual se cubre con un plástico oscuro y se amarra para que el aserrín no se derrame. Éstos se hacen cerca del área contigua a uno de los nudos.

Se debe de regar esa área o acodo cada semana, para asegurarse la emergencia de las raíces. El riego se puede hacer únicamente con agua o incluyendo un fertilizante orgánico que tenga fósforo. Una vez que las raíces tengan un buen desarrollo, alrededor de 45 días después de iniciado este procedimiento, se cortan las ramas debajo del acodo, cuidando de no ocasionarle daño. Una vez separadas las ramas, pueden ser trasplantadas a bolsas con tierra en un vivero o ser sembradas directamente en el suelo, al inicio de las lluvias.
4.2 Distancias de siembra

Para la siembra es preferible utilizar un terreno que haya sido preparado (arado y rastreado), en donde se introducen dos tercios de la longitud de la estaca dentro del suelo en el sentido del surco y en un ángulo de 45° sobre la superficie del suelo.

También puede utilizarse el método de cero labranza para la preparación del terreno, siempre y cuando éste no esté muy compactado, de manera que únicamente se aplica un herbicida sistémico y luego se procede a la siembra según se describió anteriormente.

En las zonas secas, en donde existen bien marcadas las estaciones del año, lo más importante es realizar dicha siembra al inicio de la temporada de lluvias para lograr que la humedad del suelo se mantenga a niveles elevados. La temperatura del suelo y la aireación de éste, juegan un papel significativo en la velocidad de enraizamiento y en el crecimiento del sistema radical y de la planta en general.

Como en los tempranos estadíos del crecimiento de las plantas, (primeros tres meses) las raíces tienen muy poco desarrollo, el uso de fertilización foliar a base de nitrógeno y fósforo (500 gramos de 10-30-10 en 20 litros de agua o una formulación comercial) cada 15 días, es primordial para lograr un rápido establecimiento de toda la planta.

Después de los primeros tres meses, y hasta que termine el período de establecimiento que dura de 6 a 7 meses dependiendo de las condiciones climatológicas y características del suelo en que se sembró, se recomienda utilizar un fertilizante foliar nitrogenado (700 gramos de urea por 20 litros de agua cada 22 días) aplicándolo solamente durante los meses con lluvias. También se puede utilizar un fertilizante orgánico hecho en la propia finca. Estas aplicaciones provocarán mayor crecimiento de las plantas.

La preparación del terreno antes de la siembra requiere la aplicación de un herbicida sistémico de acuerdo con las recomendaciones del fabricante. En caso de ser necesario, al momento de la siembra, se puede aplicar un herbicida pre emergente para ayudar a la planta de morera que tenga un buen desarrollo y reducir así la competencia en los primeros 4 meses en los que la planta es muy sensible.

Debido a eso, si se realiza una práctica de control de malezas durante el período de enraizamiento (primeros dos meses), accidentalmente se pueden mover las estacas, produciéndose en consecuencia su muerte. Por tanto hay que ser muy cuidadosos con el cultivo durante este período.

La cantidad de plantas por hectárea oscila entre 20 000 y 25 000 plantas. En terrenos con pendiente se deben utilizar las distancias de siembra de 1 m entre hileras y 50 cm entre plantas. En terrenos completamente planos se utilizan distancias de siembra de 75 cm entre hileras y 40 cm entre plantas.
La densidad de siembra tiene un marcado efecto sobre la producción de biomasa, ya que conforme aumenta la distancia de siembra, los rendimientos disminuyen porque hay menos plantas por hectárea. (Boschini et al. 1999).

4.3 Podas

Esta es una de las prácticas más importantes de manejo del cultivo de la morera, porque de ella depende el que se obtenga buena producción tanto en calidad como en cantidad. La falta de poda periódica desencadena la aparición de enfermedades, especialmente la *Cercospora moris* sobre las hojas viejas las que posteriormente se constituyen en fuente de contagio para las hojas jóvenes (Rodríguez 1978).

Dependiendo de las características de cada finca, la primera cosecha se puede realizar entre el sexto y el octavo mes después de la siembra y posteriormente se puede cosechar cada tres meses. En el primer año la plantación de morera produce hasta un 35% del rendimiento potencial, en el segundo año hasta un 65% y a partir del tercer año alcanza y mantiene su máximo potencial de producción (Rodríguez 1978).

Se deben practicar tres tipos de poda, a saber, poda de formación, de cosecha y de rejuvenecimiento.

4.3.1 Poda de formación

Es el corte que se le realiza por primera vez a la planta después de la siembra. Con esta poda se define la altura de la planta a la cual se deberán realizar las cosechas sucesivas. Con el paso del tiempo se da origen a la llamada “cabeza de producción” a partir de la cual se desarrollan los rebrotes. Se usan dos tipos de altura de acuerdo a si el método de cosecha es mecanizado o no. En cosecha no mecanizada o manual, la altura de corte es entre 0,25 y 0,5 m de la superficie del suelo (bajo fuste) y cuando es mecanizado la altura adecuada es de 0,8 a 1,2 m (alto fuste) (Rodríguez 1978).

4.3.2 Podas de cosecha y mantenimiento

Una vez que la plantación se encuentra en su período activo de producción, después de haber realizado la poda de formación, las cosechas se pueden realizar cada tres meses.

El corte se puede hacer con tijera o con cuchillo. Es muy recomendable que el corte sea lo más
“limpio” posible para evitar rasgaduras del tallo que puedan permitir la entrada de hongos y enfermedades. Cuando el corte se realiza con cuchillo éste debe estar bien afilado y se recomienda que el corte sea “hacia arriba” y en sentido contrario a la yema de manera que los tallos no se quiebren. Esto permite incrementar la cantidad de brotes por planta y la producción de hojas.

En caso de que posterior a la cosecha haya desuniformidad, principalmente en lo que se refiere a la altura de corte de cada rama de la planta, se procederá a realizar una poda de mantenimiento. Con esta poda se uniformiza el tamaño de las ramas recién cortadas, de manera que los tallos cortados queden lo más cerca de la base de los brotes, para dar lugar a la formación del puño o cabeza de crecimiento.

4.3.3 Poda de rejuvenecimiento o de cepo

Cuando la planta está vieja y producto de ello se ha deformado su puño o cabeza de crecimiento, se procede a realizar el corte de la planta a nivel del suelo para inducir la emergencia de un abundante número de rebrotes. Posteriormente, con los cortes sucesivos se irá formando nuevamente una nueva cabeza de crecimiento. La poda de rejuvenecimiento se realiza cada 3 a 4 años, para renovar la plantación (Rodríguez 1978).
ESTADOS FISIOLÓGICOS DE CRECIMIENTO DE LA MORERA Y EFECTO DE LA FERTILIZACIÓN

El nivel de crecimiento de la planta de morera está en función de la temperatura, altitud, humedad y fertilidad del suelo. Rodríguez (1978), define los siguientes tres estados:

• Estado de crecimiento inicial y desarrollo:

Es el estado en que los brotes, las ramas y las hojas se alimentan de los nutrimentos almacenados en la planta o estaca, de manera que el crecimiento depende principalmente de las reservas del tronco. (Boshini et al. 1999)
• Estado de asimilación o de crecimiento acelerado:

En este momento las hojas y ramas se nutren al máximo con los nutrimentos absorbidos por las raíces, ya que la absorción de los nutrimentos aplicados al suelo o a las hojas, son utilizados en niveles elevados, generando mayor crecimiento foliar y elongación de las ramas (Boshini et al. 1999).

• Estado de almacenamiento:

El desarrollo se reduce con una suspensión de la elongación de las ramas mientras que los nutrimentos asimilados por las hojas son almacenados en las hojas, ramas y raíces de la planta. (Boshini et al. 1999))
FERTILIZACIÓN

Para programar la fertilización deben de conocerse las características químicas y físicas del suelo por medio de un análisis de laboratorio. Además, deben de tomarse en consideración el estado fisiológico de la planta y el grado de intensidad de uso de la plantación, o sea cuántos cortes se harán al año. Esto permite determinar en qué momento del desarrollo fisiológico y qué cantidades de nutrimentos se deben de utilizar para obtener la mayor eficiencia de esos nutrimentos.

La fertilización trata de aportar a la planta todos los elementos que se encuentren deficientes en el suelo y que ella necesita para expresar su máximo desarrollo, permitiendo producciones sostenidas y mayor cantidad de años de producción, lo que permitirá generar mayores ingresos económicos a la explotación.

Con la fertilización se pretende mantener un buen estado sanitario del cultivo, nivel de desarrollo vigoroso y precoz de las plantas de tal modo que se obtenga material comestible de buena calidad y en gran cantidad.

6.1. Funciones de los fertilizantes

Las plantas necesitan todos los nutrimentos esenciales para poder realizar la fotosíntesis y elaborar tejidos y estructuras para así crecer y producir. El agua es especialmente importante, ya que el crecimiento (elongación) celular se produce gracias a la presión interna que ejerce el agua (turgencia) sobre las paredes, extendiéndose hacia ellas. Es por esa razón que en períodos de sequía, las plantas tienden a presentar hojas de menor tamaño (Parke 2000).

Asimismo, las deficiencias de minerales presentan síntomas característicos en las plantas.

El cuadro 1 presenta un resumen de las funciones de los nutrimentos en las plantas y sus síntomas de deficiencia.
Cuadro 1. Funciones de los nutrimentos en las plantas y sus síntomas de deficiencia

<table>
<thead>
<tr>
<th>NUTRIMIENTO</th>
<th>FUNCIÓN</th>
<th>SÍNTOMAS DE DEFICIENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrógeno</td>
<td>Estimula el crecimiento rápido; favorece la síntesis de clorofila, de aminoácidos y proteínas.</td>
<td>Crecimiento atrofiado; color amarillo en las hojas inferiores; tronco débil; color verde claro.</td>
</tr>
<tr>
<td>Fósforo</td>
<td>Estimula el crecimiento de la raíz; favorece la formación de la semilla; participa en la fotosíntesis y respiración.</td>
<td>Color pupúrero en las hojas inferiores y tallos.</td>
</tr>
<tr>
<td>Potasio</td>
<td>Acentúa el vigor; aporta resistencia a las enfermedades, fuerza al tallo y calidad a las semillas.</td>
<td>Oscurecimiento del margen de los bordes en las hojas inferiores, tallos débiles.</td>
</tr>
<tr>
<td>Calcio</td>
<td>Constituyente de las paredes celulares; colabora con la división celular.</td>
<td>Hojas terminales deformadas o muertas; color verde claro.</td>
</tr>
<tr>
<td>Magnesio</td>
<td>Componente de la clorofila, de las enzimas y las vitaminas.</td>
<td>Amarillo entre los nervios de las hojas inferiores.</td>
</tr>
<tr>
<td>Azufre</td>
<td>Esencial en la formación de aminoácidos y vitaminas; aporta el color verde a las hojas.</td>
<td>Hojas superiores amarillas; crecimiento atrofiado.</td>
</tr>
<tr>
<td>Boro</td>
<td>Importante en la floración, formación de frutos y división celular.</td>
<td>Yemas terminales muertas; hojas superiores quebradizas con plegamiento.</td>
</tr>
<tr>
<td>Cobre</td>
<td>Componente de las enzimas; colabora en la síntesis de clorofila y en la respiración.</td>
<td>Yemas terminales y hojas muertas; color verde azulado.</td>
</tr>
<tr>
<td>Cloro</td>
<td>Colabora en el crecimiento de las raíces y de los brotes.</td>
<td>Marchitamiento; hojas cloróticas.</td>
</tr>
<tr>
<td>Hierro</td>
<td>Catalizador en formación de la clorofila; componente de las enzimas.</td>
<td>Clorosis entre los nervios de las hojas superiores.</td>
</tr>
<tr>
<td>Manganeso</td>
<td>Participa en la síntesis de clorofila.</td>
<td>Color verde oscuro en los nervios de las hojas; clorosis entre los nervios.</td>
</tr>
<tr>
<td>Molibdeno</td>
<td>Colabora en la fijación de nitrógeno y con la síntesis de proteína.</td>
<td>Similar al nitrógeno.</td>
</tr>
<tr>
<td>Zinc</td>
<td>Esencial para la formación de auxina y almidón.</td>
<td>Clorosis entre los nervios de las hojas superiores.</td>
</tr>
</tbody>
</table>

Fuente: Parker 2000
6.2. Tipos de fertilización

6.2.1. Fertilización química al suelo

La morera tiene la característica de ser un cultivo "pro-cálcico", es decir, que requiere suelos que presenten un buen contenido de calcio. Cuando los suelos presentan valores de pH inferiores a 5,0 (suelos ácidos) se necesitan aplicaciones periódicas de carbonato de calcio que van de 1,5 a 2,0 toneladas por ha por año. El principal efecto pernicioso de la acidez del suelo es la toxicidad del aluminio, que afecta las funciones biológicas de las raíces y las atrofia (Rodríguez 1978).

Los fertilizantes químicos deben ser aplicados en forma fraccionada, haciendo una aplicación a los 45 días después de la siembra y después de cada cosecha, para obtener el máximo aprovechamiento. La aplicación debe realizarse uniformemente, sobre toda la superficie de los entresurcos de la plantación a fin de prevenir la acidificación local y estimular el desarrollo de las raíces absorbentes que puedan aprovechar el fertilizante.

Se ha evaluado en diversas regiones de Costa Rica el comportamiento de la morera al usar

Cuadro 2. Efecto del sitio y niveles de fertilización nitrogenada sobre la producción de la biomasa total de tres variedades de morera

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Fertilización N, kg/ha/año</th>
<th>Variedad Tigriada MS, Ton/ha/año</th>
<th>Variedad Indonesia MS, Ton/ha/año</th>
<th>Variedad Criolla MS, Ton/ha/año</th>
<th>Rendimiento por sitio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puriscal</td>
<td></td>
<td>10,5</td>
<td>12,2</td>
<td>6,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>16,5</td>
<td>22,0</td>
<td>19,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>540</td>
<td>19,8</td>
<td>22,9</td>
<td>15,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Promedio</td>
<td>15,6</td>
<td>19,0</td>
<td>11,1</td>
<td>15,2^a</td>
</tr>
<tr>
<td>Coronado</td>
<td>180</td>
<td>17,9</td>
<td>15,5</td>
<td>6,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>19,0</td>
<td>17,8</td>
<td>8,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>540</td>
<td>21,6</td>
<td>20,6</td>
<td>11,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Promedio</td>
<td>19,5</td>
<td>18,0</td>
<td>8,9</td>
<td>15,5^a</td>
</tr>
<tr>
<td>Paquera</td>
<td>180</td>
<td>25,5</td>
<td>30,0</td>
<td>20,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>32,8</td>
<td>45,2</td>
<td>21,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>540</td>
<td>37,4</td>
<td>42,5</td>
<td>25,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Promedio</td>
<td>31,9</td>
<td>39,2</td>
<td>22,4</td>
<td>31,2^a</td>
</tr>
<tr>
<td>Promedio por variedad</td>
<td></td>
<td>22,3^a</td>
<td>25,4^a</td>
<td>14,1^a</td>
<td></td>
</tr>
<tr>
<td>N, kg/ha/año</td>
<td></td>
<td>540</td>
<td>360</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>MS, ton/ha/año</td>
<td></td>
<td>24,1^a</td>
<td>21,6^a</td>
<td>16,1^b</td>
<td></td>
</tr>
</tbody>
</table>

Valores con igual letra no difieren significativamente
Fuente: Espinoza 1996
diferentes niveles de fertilización, a efecto de detectar los niveles más adecuados desde el punto de vista de producción de biomasa. Así, en Turrialba se emplearon niveles de fertilización nitrógenada de cero a 480 Kg/ha/año, durante tres años, lográndose rendimientos de 19 y 30 toneladas de materia seca por ha/año para cero y 480 kg/ha/año respectivamente. (Benavides et al. 1994).

Espinoza (1996), evaluó en diferentes localidades de Costa Rica tales como Coronado, Puriscal y Paquera el efecto de sitio y diferentes niveles de fertilización (180, 360 y 540 kg. N/ha/año) y determinó un fuerte incremento en la producción de materia seca total así como la comestible conforme aumentó el nivel de fertilización. (Cuadro 2).

En Paquera se observaron los mayores rendimientos, 37,1 t de MS/ha/año, siendo estos superiores en un 64,4% con respecto a los de Coronado y Puriscal. A pesar de un prolongado período de sequía, la mayor luminosidad y temperatura de Paquera estimularon una mayor producción.

Le siguió Coronado por su buen nivel de lluvias, pero por su baja luminosidad y bajas temperaturas la producción de biomasa fue menor que la de Paquera, por lo que Puriscal fue el sitio donde se obtuvieron los menores rendimientos debido a que sus suelos son arcillosos y con menor contenido de nutrientes.

La decisión de cuánta cantidad de fertilizantes químicos aplicar, va a depender del costo de cada fertilizante así como del costo del kilogramo de proteína del alimento concentrado que se utilice. Éstos son los comparadores para determinar la rentabilidad del uso del forraje como suplemento alimenticio.

6.2.2. Fertilización orgánica y manejo del suelo

La materia orgánica del suelo tiene su origen en los restos de plantas y animales en diferentes estados de descomposición, así como la biomasa microbiana. La fracción orgánica se puede dividir a nivel de concepto y tomando en cuenta su complejidad, en dos grupos: 1) Materia orgánica fresca y 2) Materia orgánica transformada.

Esta última incluye a su vez dos subgrupos: a) productos resultantes de la descomposición avanzada de residuos orgánicos y síntesis microbiana y b) sustancias húmicas que forman parte integral del suelo y que no podrían ser separadas por métodos mecánicos. (Labrador 1996)

Se estima que la composición de la materia orgánica en el suelo estaría definida por un 10% de carbohidratos (CHOS), 10 % compuestos nitrogenados (incluyendo proteínas, péptidos, aminoácidos, amino-azúcares, purinas, pirimidinas y otros compuestos), un 15 % de grasas, ceras y resinas y 65 % sustancias húmicas. Estos porcentajes varían ampliamente y están sujetos a gran cantidad de factores externos e internos (Schnitzer 1990 citado por Labrador 1996).

Aunque el suelo disponga de adecuada cantidad de materia orgánica, es necesaria la aplicación de nitrógeno (N). Ésta puede hacerse como fertilizante químico u orgánico o por medio de la incorporación al suelo de abonos verdes como una leguminosa.

Esto es importante para que aquellas plantas como la morera, que no son leguminosas, dispongan de un adecuado aporte de N de forma aprovechable para su crecimiento.

El productor cuenta con varias opciones para incorporar nitrógeno al suelo además de la apli-
cación de fertilizantes químicos. La agricultura sostenible ofrece al productor prácticas agrícolas que llevan a la sostenibilidad entre las cuales, para este caso específico están:

a) incorporación de abonos verdes, mediante leguminosas
b) asociación de cultivos y
c) aplicación de abonos orgánicos.

Los abonos orgánicos procedentes de residuos vegetales o de animales contienen variadas cantidades de minerales como magnesio, calcio, azufre, y otros nutrimentos en proporciones equilibradas, los cuales a medida que la materia orgánica se va descomponiendo, se hacen más disponibles para el crecimiento de las plantas (Vandevivere y Ramírez 1995).

De acuerdo con Boschini, 1999 y Elizondo 2008, en lo que respecta al cultivo de la morera, la presencia de un alto contenido de proteína en las hojas, así como los altos rendimientos de biomasa por unidad de área, hacen suponer que hay que reponerle al suelo el nitrógeno extraído de manera que éste sea capaz de mantener la productividad del cultivo a lo largo del tiempo.

En otras palabras buscar una producción sostenible de la morera, de manera que el productor pueda mejorar las condiciones del cultivo mediante un plan de manejo del suelo y reducir costos de producción (Martínez 2003).

Entre las leguminosas a recomendar para ser incorporadas como abono verde está la mucuna (Stizolobium deeringianum), especie que aporta 7,20 t/ha de materia orgánica. Esta cantidad de materia orgánica por hectárea equivale a 15,5 sacos de Nutrán, 2,8 sacos de 18-46-0 y 12,6 sacos de 15-3-32 (Martínez y Ramírez 2000 y Ávila 2004).

Una leguminosa recomendable para ser asociada con la morera es el gandúl (Cajanus cajan) especie que aporta 10,61 t/ha de materia orgánica. Esta cantidad de materia orgánica equivale a 9,5 sacos de Nutrán, 2 sacos de 18-46-0 y 9,8 sacos de 15-3-31 (Martínez y Ramírez 2000 y Ávila 2004).

En Costa Rica se encuentran en estudio otras leguminosas que podrían asociarse a la morera y además mejorar el contenido de materia orgánica en el suelo, esta práctica reduciría sus costos de producción en momentos en que el alto costo de los fertilizantes deja sin opciones de un buen manejo de la fertilización al pequeño y mediano productor.

En lo que respecta a la aplicación e incorporación de abono orgánico para suplir necesidades de nitrógeno al suelo, esta práctica está sujeta al control de calidad del abono durante el proceso productivo, al origen del sustrato y edad del mismo, así como a su madurez. De ello depende el contenido final de materia orgánica, Pero además hay que tener claro que el mayor aporte que hacen los abonos orgánicos a un suelo está directamente relacionado con la carga microbiana, más que con el contenido de nutrientes.

De ahí la importancia del manejo adecuado de la humedad durante y después del proceso, así como la aplicación e incorporación del mismo al suelo.

Entre los abonos orgánicos que se pueden producir en la finca, principalmente cuando se tiene ganado, es el abono de lombriz o lombricomposta. (Martínez et al. 2002).

La presencia de un sistema multiplicador de microorganismos en el intestino medio de la lombriz, hace que este abono presente una alta carga microbiana que induce a la mejora del conteni-
do de materia orgánica y a la liberación y disponibilidad de nutrientes a las plantas. Es importante anotar que los nutrientes, no importa la cantidad presente en el abono están disponibles para la planta inmediatamente el abono se incorpore al suelo.

Otra opción con que cuenta el productor es la aplicación foliar de abono líquido extraído durante el proceso de lombricomposteo. Este es un tema de cuidado y aún se encuentra en investigación, sin embargo algunos productores han ido identificando la cantidad a aplicar con buenos resultados. El cuidado a tener se debe precisamente a que no se pueden generalizar las dosis a aplicar. Las experiencias son propias de cada productor, debido a la variabilidad existente entre los sustratos a utilizar para la elaboración de los abonos, así como se desconoce aún el momento preciso para su cosecha y aplicación (Martínez 2003).

Es importante mencionar que los estiércoles de caprino, ovino y de conejo son abonos fríos es decir no producen mucho calor, por lo tanto no queman a las plantas cuando se aplican directamente después de la defecación.

El estiércol de bovinos, equinos, cerdos y aves son abonos calientes (producen mucho calor) razón por la cual deben someterse a un proceso de transformación, por medio del uso de lombrices o lombricomposteo, para luego de un tiempo usarse en las plantas.

Figura 14. Sistema de bombeo propulsor de estiércol de vaca. Finca de don José Sobrado en Los Ángeles de San Ramón, Provincia de Alajuela, Costa Rica

Figura 15. Morera fertilizada con estiércol de vaca diluido en agua. Finca de don José Sobrado en Los Ángeles de San Ramón, Provincia de Alajuela, Costa Rica

Figura 16. Morera fertilizada con estiércol de vaca diluido en agua. Finca de don José Sobrado en Los Ángeles de San Ramón, Provincia de Alajuela, Costa Rica
En la finca de don José Sobrado en Los Ángeles de San Ramón, Provincia de Alajuela, Costa Rica se utiliza el estiércol de las vacas diluido en agua el cual se recoge en un tanque, que luego es impulsado por una bomba, para llevarlo por tubería hasta los lotes donde se encuentra la morera para ser distribuido, con excelentes resultados.

El cultivo de morera responde muy bien a las aplicaciones de materia orgánica, en niveles de hasta 8,0 t/ha la que contribuye a mejorar la estructura del suelo, aumentar la capacidad de retención de humedad, mejorar la actividad microbiológica, cambiar la reacción del suelo, incrementar la retención de nutrientes, abastecer de micro y macro nutrientes, mejorar la fijación del nitrógeno y disminuir la retención del fósforo (Benavides et al. 1994).

Los mejores rendimientos se logran con la aplicación simultánea de la cantidad de materia orgánica, nitrógeno, fósforo y potasio de acuerdo con los análisis. Esta práctica conviene complementarla con un eficiente control de malezas e incorporación de la materia orgánica, aplicada en los entresurcos y de ser posible con la introducción de maní forrajero (Arachis pintoi). El establecimiento del maní incorpora nitrógeno al suelo y mejora la calidad de la dieta al ser cortado al mismo tiempo que cuando se cosecha la morera, además de que ayuda en la conservación del suelo evitando la escorrentía. (Castro 2005).

Benavides et al. (1994), evaluaron el efecto de la aplicación de tres niveles de estiércol de cabra en el suelo contra un nivel de fertilización química de 480 kg/ha/año de nitrato de amonio sobre el rendimiento de la biomasa total. Recomendaron el uso del estiércol de cabra (caprinasa) fresco en dosis de 1,2 kg. por planta después de cada poda, los cuales producen rendimientos en producción de forraje verde de 120 t/ha/año, mayores que los obtenidos con nitrato de amonio que no excedieron 90 t FV/ha/año.

La gran ventaja del uso del estiércol de cabra es que en altas dosis es capaz de aportar al suelo alrededor de 480, 170, 640, 410 y 200 kg./ha/año de nitrógeno, fósforo, calcio, potasio y magnesio respectivamente. Además se observa un incremento importante, con los años, en la producción de biomasa Benavides et al. (1994).

6.2.3. Fertilización foliar

La fertilización foliar permite una rápida utilización de los nutrientes por parte de las plantas, logrando de esa manera una corrección de las deficiencias observadas en menos tiempo, favoreciendo el desarrollo y mejorando el rendimiento y la calidad del forraje (Castro 2005).

Paralelo a la utilización de fertilizantes químicos al suelo y con el propósito de mejorar la eficiencia en producción de los cultivos, se puede utilizar la fertilización foliar, que es el proceso por medio del cual el nutriente se incorpora a la planta a través de las hojas ahorrando tiempo y
ocasionando poca pérdida del fertilizante. Entre los efectos positivos derivados de la fertilización foliar se han mencionado el incremento del área foliar y la tasa de crecimiento del cultivo, mejor tolerancia al estrés hídrico y térmico o a daños mecánicos, así como en la tolerancia a enfermedades (Castro 2005).

Para el buen éxito de la fertilización foliar Castro (2005) indica que es necesario tomar en consideración los siguientes factores:

- **Formulación foliar:**

 La adecuada concentración del producto y el pH de la solución, con adición de productos que ayuden en el proceso de absorción a través de los poros de las hojas u otros que ayuden a que el producto se mantenga en las hojas y no gotee. Es importante tener en cuenta el tamaño de la gota a la hora de asperjar, ya que gotas muy grandes pueden causar pérdidas del líquido.

- **El ambiente:**

 Luz, humedad relativa y horas de aplicación. Se recomienda aplicar en horas tempranas de la mañana o en las horas del atardecer, para evitar las altas temperaturas que impiden que los estomas o poros absorban el producto, así como prevenir que las lluvias laven el producto utilizado.

- **El estado de crecimiento de la plantación:**

 Las plantas jóvenes o las que están en crecimiento activo son las que tienen mayor capacidad de absorción.

6.2.3.1. Dosis de fertilizante foliar a usar

Con respecto a las dosis, se recomienda leer las instrucciones del producto, ya que las cantidades a utilizar dependen tanto de sus concentraciones como del equipo y la calibración que éste tenga. En este aspecto es recomendable la asesoría con los técnicos especialistas en este campo para lograr aplicaciones que permitan mayor productividad del cultivo.

Ting-Zing *et al.* 1988, indican que cuando se aplican los tres elementos nitrógeno (N), fósforo (P) y potasio (K) juntos, por medio de fertilización foliar, se obtiene 120 toneladas por hectárea al año cuando existe un suelo fértil, además que exista buena humedad y temperatura ambiental.

Cuando únicamente se aplican N y P en esas mismas condiciones ecológicas, la producción se reduce a un 86 % y cuando se usan solo el N y K, se disminuye a un 76 %. Al aplicar P y K la producción baja a un 47 %. Nótese que la mayor disminución en la productividad se produce cuando el nitrógeno está ausente (Soria *et al.* 2001).

También se puede hacer uso de muchos fertilizantes foliares orgánicos a base de hojas de
plantas o de estiércoles de cabra, oveja, conejo o bovino, que abaratan el costo por ser produ-
cidos en las mismas fincas mediante un proceso fácil y rápido. Éste consiste en depositar 50 kg
de estiércol de cualquiera de las especies animales dentro de un recipiente con capacidad de
almacenar 50 galones de agua. Agregarle agua hasta llenarlo y dejarlo tapado durante 15 días
(Castro 2005).

Luego se filtra el fertilizante producido para eliminarle basuras y una vez limpio se vierte en una
bomba de espalda para proceder a usarlo directamente sobre el cultivo de morera. La precaución
que se debe tener es que 15 días antes de cortar la morera para suministrársela a los animales,
se debe suspender su uso, a efecto de evitar rechazo por lo animales debido a que puede dejar
rastreros de olor (Castro 2005).
CONTROL DE MALEZAS

El ganadero debe de tener la visión de que la plantación de morera es la fábrica de concentrado en su propia finca, la cual puede producir mayor cantidad de ingresos por hectárea, debido a que sus animales producirán mayores ganancias de peso o altos niveles de producción de leche.

También debe de saber que la presencia de malezas en el cultivo de morera es uno de los problemas más graves que se debe afrontar, especialmente al momento del establecimiento del cultivo, ya que ellas afectan su desarrollo al competir directamente por luz, agua y nutrimentos. No es posible un buen establecimiento del cultivo con alta presencia de malezas. Asimismo, la productividad de la plantación disminuye en presencia de malezas, por tanto debe de establecerse un buen programa de control.

El control manual con machete es apropiado cuando las malezas no sobre pasen los 15 cm de altura, es decir alrededor de un mes después de la siembra o después de cada corte. Cuando se realice esta labor se debe de tener el cuidado de no tocar las estacas recién sembradas, ya que en esta etapa se rompen con facilidad las frágiles raíces, causando la muerte de la estaca. Cuando la plantación ya está establecida y se inicia la cosecha de la biomasa, ya no existe peligro de dañar la planta por el uso del machete por lo que es fácil su limpieza.

Para el control químico se utilizan dos tipos de herbicidas: a) los de contacto o quemantes, que actúan sobre las hojas sobre las que cae el producto y b) los sistémicos, que actúan por toda la planta al ser absorbidos y movilizados a través de ella hasta las raíces, eliminándolas por completo.

Los herbicidas que se llaman pre-emergentes pueden ser aplicados desde antes de la siembra de las estacas hasta antes del inicio de la brotación de las hojas; estos previenen la aparición de malezas durante el desarrollo del cultivo, que es la época de la vida productiva de la morera donde es más débil.

Los herbicidas selectivos controlan cierto tipo de malezas, diferenciando entre los de hoja ancha y de hoja angosta. Para ello se debe realizar una valoración previa a fin de determinar la incidencia de un tipo u otro de maleza a efecto de seleccionar el producto a usar, su concentración, tipo de boquilla a emplear y en unos 20 días después de aplicados, evaluar el efecto producido, para decidir sobre la necesidad de una segunda aplicación.

Cuando el cultivo de morera tenga un año o más de establecido, el control químico es más eficiente y se recomienda realizarlo inmediatamente después de cada corte. Recuerde “es más fácil prevenir que curar”.

Figura 18. Control de malezas con machete.
PRODUCCIÓN DE BIOMASA

8.1 Efecto de la frecuencia de poda sobre la calidad de la biomasa

El mejor momento del corte del rebrote para ser suministrado a los animales se ha determinado en Costa Rica que se obtiene usando frecuencias de corte entre 75 y 90 días, en donde la producción de hoja es superior a la de tallo. Cuando se usan frecuencias de 112 días se invierte la tendencia. La morera se debe cortar antes de los 90 días para aprovechar un balance entre producción de material verde y el mayor valor nutritivo de la biomasa. (Boshini et al. 1999).

8.2 Efecto de la altura de corte sobre la producción de biomasa

En una zona húmeda y caliente como Turrialba en Costa Rica, donde la temperatura ambiental media oscila alrededor de 25 ºC y la luminosidad es de 6 horas diarias a través del año, en cultivos de 20 000 plantas/ha se han obtenido rendimientos de 2,32 kg./planta/año. Esto realizando la poda a 50 cm de altura sobre el nivel del suelo. Si la poda se realiza a 1 m de altura, se obtienen rendimientos de 2,12 kg./planta/año. (Benavides et al. 1986) Estos resultados coinciden con los obtenidos en las zonas de Puriscal y Coronado, (Espinoza 1996).

Tanto en Costa Rica como en Cuba la altura de corte que produce los mayores rendimientos de biomasa comestible es la de 50 cm. (Benavides et al. 1986 y Martín et al. 1999).

8.3 Rendimientos de la morera

La producción de biomasa de morera en explotación intensiva, sembrada en suelos bien drenados, en lugares con alta luminosidad y con precipitación de media a alta, usando una densidad de siembra de 60 cm entre plantas y 75 cm entre hileras, la altura de corte de 50 cm, con frecuencia de corte de 84 días y un nivel de fertilización de 450 kg de nitrógeno/ha/año, produce rendimientos de biomasa fresca entre 70 y 119 t/ha/año. Estas producciones se han obtenido en las zonas de Cóbano, Turrialba, Cartago y Coronado en Costa Rica. (Espinosa 1996 y Boschini et al. 1999)
PLAGAS Y ENFERMEDADES DEL CULTIVO MORERA

En Costa Rica, las plagas no han sido problema, especialmente debido a los altos niveles de fertilización utilizados, así como a los frecuentes cortes del forraje, lo que permite a las plantas estar bien nutridas y vigorosas, haciendo que fácilmente el productor pueda detectar cualquier aparición de una plaga y proceder rápidamente a eliminarla, sin que ésta se extienda en el cultivo.

Generalmente se observan daños causados por insectos en el lado inferior de las hojas. Esto ocasiona manchas de color café en las puntas o en las nervaduras de las hojas. Sin embargo no causa gran perjuicio a la plantación. Se recomienda realizar revisiones periódicas al cultivo para determinar la magnitud de los daños, para en caso de ser necesario, proceder con el control. Para esto se debe de consultar con los expertos.

Por las mismas razones del uso intensivo que se da a la plantación, tampoco las enfermedades han sido problema, ya que este tipo de manejo permite fácilmente al productor detectar cualquier aparición de enfermedades y proceder rápidamente a controlarlas. La más común es la mancha foliar producida por la *Cescospora moricola*, pero se presenta cuando las plantas son muy viejas (Soria et al. 2001).
Para disponer permanentemente de biomasa comestible de morera de excelente calidad y en cantidad suficiente para alimentar cotidianamente al hato, es imprescindible hacer una planificación de la producción del cultivo, mediante la determinación de las necesidades diarias de consumo de los animales, para proceder a calcular el número de plantas que se deben cortar por día.

Asumiendo que la morera se cosecha cada 90 días y produce un promedio de 90 t/ha/año, se recomienda utilizar un sistema de cosecha rotacional.

Por ejemplo, si un ganadero quiere suplementar 33 vacas ofreciéndole a cada una de 10 kg de morera fresca (un promedio de 3,3 kg MS/vaca), la
La pregunta que se debe hacer es: ¿Cuántas plantas hay que cortar diariamente? La respuesta es 222 plantas para obtener una cantidad de 333 kg de material fresco.

La morera se puede ofrecer a los animales en forma fresca, ensilada o como harina. En México para hacer harina usan un proceso que consiste en secar el material cosechado (hojas y tallos tiernos), extendiéndolo sobre una superficie de cemento en capas de 10 cm de alto. Se procede a darle vuelta diariamente para favorecer el secado hasta que llegue a 85 % de materia seca, luego es pasado por un molino de martillos con malla de 5 mm y el material obtenido se coloca en sacos de polietileno para ser almacenado por períodos no mayores a una semana (Mata et al. 2006).

Para facilitar el secado se puede utilizar un secador solar o un invernadero de plástico transparente totalmente cerrado, que tenga unos 8 estantes para aprovechar al máximo el espacio y colocar la morera en capas no mayores de 10 cm, a efecto de lograr el más rápido secamiento, obteniéndose un material que no pierde su alto valor nutritivo (23 % PC) (Martín et al. 1999).
VALOR NUTRITIVO DE LA MORERA

II.1 Comparación de la morera con otras especies forrajeras

Dado que los forrajes son la base de la alimentación de los rumiantes, es fundamental conocer la calidad nutricional de los mismos. Entender cómo se estima la calidad de un forraje o por qué se dice que es bueno o malo para la alimentación animal, es muy difícil. Pero hay algunos conceptos que son básicos para ese entendimiento.

La calidad de los forrajes está dada por el contenido de proteína, energía, minerales y vitaminas de su materia seca (MS). El contenido MS de un forraje es inversamente proporcional al contenido de agua. O sea entre más agua tenga un forraje, menor cantidad de MS tiene y por lo tanto, menos capacidad de almacenar nutrimentos. Por eso es tan importante este componente en la alimentación animal.

También la MS está constituida por dos tipos de fibra, la fibra neutro detergente (FND) y la fibra ácido detergente (FAD), las que también determinan la calidad de la MS.

La FND está asociada con el consumo de materia seca (CMS) mientras que la FAD se asocia con el consumo de energía disponible. Esto es debido a que el CMS y de energía disponible son de los principales factores que afectan el desempeño productivo de los animales. (Moore y Undersander 2002)

La digestibilidad de la FND es menor y por lo tanto el aporte de energía es menor, si el porcentaje de FND se incrementa. (NRC 2001). Por otro lado y dado que el contenido de FND está correlacionado positivamente con la densidad del forraje y el llenado del rumen, un mayor contenido de FND significa un menor consumo de materia seca (CMS). (Belyea et al. 1996).

La FAD está compuesta por celulosa y lignina y presenta contenidos variables de pectina, hemicelulosa, cenizas y proteínas asociadas. El contenido de la FAD se correlaciona con la digestibilidad de la MS, por lo que se ha utilizado con más frecuencia para estimar el contenido de energía de los forrajes. (Belyea et al. 1996).

Singh et al. 1984 indican que la morera tiene 33 % de FND, 28,1 % de FAD, 4,9 % de hemiceululosa, 10,8 % de lignina, 19,2 % de celulosa y 17,3 % de cenizas.

La MS de la Brachiaria brizantha contiene alrededor de un 61,7 % de FND y 38,3 % de FAD. Su FND está compuesta por alrededor de un 25,8 % de celulosa, 4,6 % de lignina y 31,3 % de hemicelulosa.

Se nota que la morera tiene un contenido mayor en lignina que la B. brizantha, pero según Mc-
Camnon-Feldman et al. (1981), su efecto se minimiza debido al bajo contenido de pared celular (34,9 %) y su reducida asociación con la celulosa.

En el siguiente cuadro se muestran los contenidos de FND y FAD de varios forrajes.

Cuadro 3. Calidad de la morera comparada con otros forrajes usados en rumiantes.

<table>
<thead>
<tr>
<th>Forraje</th>
<th>Fibra Neutro Detergente</th>
<th>Fibra Acido Detergente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morera (Morus alba)</td>
<td>33,00</td>
<td>28,10</td>
</tr>
<tr>
<td>Ramio (Bohemeria nivea)</td>
<td>43,30</td>
<td>39,30</td>
</tr>
<tr>
<td>Raigras (Rye grass)</td>
<td>46,40</td>
<td>30,90</td>
</tr>
<tr>
<td>Kikuyo (Pennisetum clandestium)</td>
<td>52,50</td>
<td>35,00</td>
</tr>
<tr>
<td>Brachiaria (Brachiaria Brizantha)</td>
<td>61,70</td>
<td>38,30</td>
</tr>
<tr>
<td>Estrella africana (Cynodon oleostachyus)</td>
<td>67,80</td>
<td>39,00</td>
</tr>
<tr>
<td>Maíz (Zea Mays)</td>
<td>75,70</td>
<td>48,10</td>
</tr>
</tbody>
</table>

En el cuadro anterior se puede apreciar que la morera presenta los menores contenidos tanto en FND como de FAD.

La morera contiene 3,8 Mega calorías de energía, lo cual la hace comparable a un cereal, por lo tanto perfectamente puede usarse como un concentrado (Castro 2005).

Otra característica de la morera es su alto contenido de minerales con valores de cenizas de hasta 17 %. Los contenidos típicos de calcio son entre 1,8 y 2,45 %; los de fósforo entre 0,14 y 0,24 %; los de potasio entre 1,90 y 2,87 % en hojas y entre 1,33 y 1,55 % en los tallos tiernos y contenidos de magnesio entre 0,47 y 0,64 % en hojas y entre 0,26 y 0,35 % en tallos tiernos (Espinosa 1996).
CULTIVO DE MORERA (*Morus spp*) Y SU USO EN LA ALIMENTACIÓN ANIMAL

UTILIZACIÓN DE LA MORERA EN LA PRODUCCIÓN ANIMAL

12.1. Rumiantes

12.1.1 Morera en alimentación de animales productores de leche

La cantidad de leche que produce una vaca o una cabra es el resultado de una combinación de factores que influyen sobre su capacidad fisiológica de producción, la cual está determinada por su genética, su historia nutricional y el estado de lactancia (si está al principio de la lactancia, fase media o final) y está influenciada por la cantidad y calidad de nutrimentos que consume el animal.

Oviedo et al. (1993), en Turrialba, Costa Rica, bajo condiciones de trópico húmedo, evaluaron el comportamiento productivo de un mini módulo familiar compuesto por dos cabras durante tres años, alimentadas sólo con 36 % hojas de morera y 64 % de pasto king grass (*Pennisetum purpureum* x *P. typhoides*) obteniendo rendimientos de 876 kg de leche por lactancia de 300 días. En este mismo módulo observaron durante el mes pico de lactancia, producciones promedio superiores a 4,0 kg/an/día.

La forma de suministrar la morera a las cabras puede ser ofreciendo en comederos las plantas enteras de manera que ellas seleccionen las partes que le son más apetecibles, rechazando los tallos duros pero consumiendo la cáscara, esto por sus hábitos de consumo. También se les puede dar en forma picada, de donde ellas seleccionarán lo que quieran. El máximo de consumo encontrado ha sido 10 kg. de materia verde, lo que representa el 5,6 % de su peso vivo (Castro 2005).

En el caso de vacas lecheras, a medida que se aumenta el consumo de morera se puede ir sustituyendo parte del concentrado, sin que la producción de leche se disminuya, pudiéndose disminuir los costos de producción y por ende mejorar la rentabilidad de la finca.

Como resultado de la suplementación con morera se puede aumentar significativamente la capacidad de carga de las fincas ganaderas, así como disminuir los costos de alimentación al sustituir hasta un 75 % el uso de los concentrados, sin que los niveles de producción disminuyan (Esquivel et al. 1996).

Oviedo (1995), al comparar el follaje de morera con el concentrado, como suplemento a vacas jersey en pastoreo, obtuvo un nivel de producción de leche similar (13,2 y 13,6 kg/día, respectivo...
vamente) para cada suplemento a iguales niveles de consumo de MS (1,0 % del peso vivo “PV”) y muy superior al obtenido con sólo pastoreo (11,3 kg/día). El uso de morera en la dieta no afectó el contenido de grasa, proteína y sólidos totales de la leche pero si mejoró el beneficio neto en comparación con el concentrado (US $3,29 versus $2,84 respectivamente).

Esquivel et al. (1996), al reemplazar el 0 %, 40 % y 75 % del concentrado por follaje de morera, no encontraron diferencias significativas (P 0,05) en la producción de leche (14,2; 13,2 y 13,8 kg./día respectivamente) de vacas Holstein en pastoreo y sin efectos apreciables en la calidad de la leche como se muestra en el cuadro 4.

Cuadro 4. Efecto de la sustitución de concentrados por morera en vacas Holstein pastoreando pasto kikuyu (*Pennisetum clandestinum*)

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>CONCENTRADO: MORERA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100:0</td>
</tr>
<tr>
<td>Leche, kg/día</td>
<td>14,2</td>
</tr>
<tr>
<td>Consumo, kg. de materia seca por día</td>
<td></td>
</tr>
<tr>
<td>Concentrado</td>
<td>6,4</td>
</tr>
<tr>
<td>Morera (Morus sp)</td>
<td>0</td>
</tr>
<tr>
<td>Pasto kikuyu (Pennisetum clandestinum)</td>
<td>9,3</td>
</tr>
<tr>
<td>Total</td>
<td>15,7</td>
</tr>
</tbody>
</table>

Fuente: Esquivel et al. 1996.

12.1.2 Morera en la alimentación de animales de carne

González (1996), evaluó la calidad nutricional de la morera fresca suministrada a bovinos de engorde de una edad comprendida entre los 9 y 12 meses con un peso inicial de 110 y 210 kg., de raza Romo Sinuano (criolla), en el CATIE, Turrialba. Se determinó que a mayor oferta mayor fue el consumo. Se encontró un efecto sustitutivo del consumo de nutrimentos provenientes del pasto de piso, a medida que aumentó el consumo de morera. Este efecto fue más evidente a partir de un consumo superior al 1,9 % del peso vivo (PV) en base seca. Sin embargo, el consumo de morera continuó aumentando después de este nivel de oferta, por lo que se espera que al aumentar su oferta, el consumo de ésta sea mayor.

La ganancia de peso diaria aumentó en relación directa a la mayor oferta de morera en la ración, siendo notoria la respuesta con la menor oferta de follaje. Se demostró que conforme aumenta la cantidad de morera ofrecida picada fresca a novillos de engorde (210 Kg. de peso), aumentan las ganancias de peso diaria. Así ofreciendo alrededor de 4 kg de morera por animal por día, éstos aumentan hasta 950 gramos por animal por día. En este trabajo el estudio de presupuesto parcial dio como resultado una relación ingreso/costo de 1,18.

En prueba de crecimiento en ovinos, en el CATIE, Turrialba, Costa Rica, corderos alimentados con una dieta base de king grass, se reportan ganancias de peso de 60, 75, 85 y 101 g/día cuando se suplementan con morera a razón de 0; 0,5; 1,0; y 1,5 % del peso vivo en base seca, con un incremento notable en el consumo total de materia seca y sin detrimento importante en el consumo del pasto (Benavides 1991).
12.1.3 Morera en la alimentación de monogástricos

Dado que la morera se ha utilizado por milenios en la alimentación del gusano de seda y éste posee un sistema digestivo relativamente simple, entonces podría ser usada como alimento para monogástricos, cuando menos como un ingrediente en su dieta.

En un ensayo con cerdos en crecimiento realizado por Trigueros y Villalta (1997), probaron la sustitución de diferentes niveles de harina de hoja de morera en lugar de un concentrado comercial. El mejor nivel de substitución fue del 15 %. Este nivel incrementó las ganancias diarias de 680 g, con solo concentrado, hasta 740 g, con mejor rentabilidad.

Las hojas de la morera se han usado para suplir los requerimientos en el engorde de los conejos. Así, Deshmukh et al. (1993) ofrecieron hojas de morera como alimento exclusivo a conejos adultos, y encontraron consumos de 68.5 g de MS al día, 11.2 g de proteína y 175 kcal de energía digestible (equivalente a 2,55 Mcal de energía digestible por kg). Los valores de digestibilidad fueron de 74 % para la proteína cruda, 59 % para la fibra cruda y 64 % para la MS. Estos autores concluyeron que las hojas de morera proporcionaban suficiente energía para el mantenimiento.

Por otra parte Lara y Lara et al. (1998) también en conejos, evaluaron lo que ocurría al reducir el concentrado ofrecido diariamente de 110,0 a 17,5 g, sustituyéndolo con morera ofrecida ad libitum, y obtuvieron que solo se redujo las ganancias de peso de 24 a 18 g/d, pero lograron un disminución de más de un 50 % en el costo de la carne producida.

En gallinas de postura, Narayana y Setty (1977) encontraron mejor color de la yema, mayor tamaño del huevo y mejor producción con la inclusión de hasta 6 % de harina de hojas de morera secada al sol en el alimento.

Otros pequeños animales, como los cobayos, las iguanas y los caracoles, también pueden ser alimentados con hojas de morera.
ENSILAJE DE MORERA

Tanto en las épocas de verano como en los inviernos muy lluviosos, los problemas cotidianos que afronta la actividad pecuaria, es la disminución de la disponibilidad y calidad del pasto, con la consiguiente disminución del peso y producción de leche de los animales, lo que repercute negativamente en los ingresos de las explotaciones ganaderas.

Con el propósito de concientizar a los ganaderos a estar preparados para afrontar dichos problemas, se recomienda el almacenamiento de comida por medio del ensilaje de forrajes que se producen de más durante la época de mayor precipitación del año. Los ensilajes tradicionalmente se hacen con gramíneas tropicales o con maíz y en los últimos años se ha estado haciendo con Cratylia (Cratylia argentea) y con alguna leguminosa como la rabiza (Vigna unguiculata).

Una excelente alternativa de ensilaje es el uso de la morera, la que debido a su poca fibra y alto nivel de carbohidratos en su follaje, puede ensilarse sin aditivos, con pocas pérdidas en proteína cruda (entre 16 y 21 % de PC) y con una digestibilidad entre 66 y 71 % (Vallejo 1995 y González 1996). Estos son parámetros muy superiores a los de ensilajes hechos con forrajes tropicales. El elevado contenido energético de la morera posibilita el ensilaje con alto contenido de nutrientes, lo que puede redundar en mayores niveles de consumo que el observado con el ensilaje de gramíneas.

Cuadro 5. Calidad de la morera en diferentes presentaciones. Puriscal, Costa Rica

<table>
<thead>
<tr>
<th>Presentación</th>
<th>% MS</th>
<th>% PC</th>
<th>% DIVMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresca</td>
<td>27,0</td>
<td>24,9</td>
<td>70,8</td>
</tr>
<tr>
<td>Ensilada</td>
<td>26,9</td>
<td>23,4</td>
<td>73,4</td>
</tr>
<tr>
<td>Fresca +5% melaza</td>
<td>30,1</td>
<td>21,0</td>
<td>78,0</td>
</tr>
<tr>
<td>Ensilada + 5% melaza</td>
<td>30,4</td>
<td>20,3</td>
<td>79,4</td>
</tr>
</tbody>
</table>

Fuente: Vallejo et al. 1993

El ensilaje de morera tiene un olor dulce agradable, de color verde amarillo y con una textura seca. Vallejo et al. (1993) ofrecieron el ensilaje de morera a cabras como dieta única, y éstas mostraron un consumo del 5,0 % del peso vivo en base seca y un rendimiento de 2,0 kg/animal/ día de leche.

González (1996), evaluó la calidad nutricional de la morera ensilada en bovinos de engorde de una edad comprendida entre 9 y 12 meses con un peso inicial de 110 y 210 kg, en el CATIE, Turrialba. Determinó que el consumo de ensilaje produjo en los novillos un fuerte efecto sustitutivo sobre el consumo de nutrientes proveniente del pasto de piso. La ganancia de peso pasó de 117 g/animal/día con solo consumo de pasto a 605 g/animal/día con la suplementación de ensilaje de morera en una proporción del 2,5 % del peso vivo del novillo. El consumo de energía metabolizable pasó de 4,19 Mcal/animal/día con solo el consumo de pasto a 6,0 Mcal/animal/día.
BIBLIOGRAFÍA

• Gaitan, S. y Pabón, J. D. 2003 Aplicación del modelo NRC en la caracterización energética y proteica de los pastos kikuyo (Pennisetum clandestinum, Hochst), ryegrass (Lolium perenne) y falsa poa (Holcus lanatus) en un hato lechero del oriente antioqueño. Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias. 55 p.

CULTIVO DE MORERA (*Morus spp*) Y SU USO EN LA ALIMENTACIÓN ANIMAL

- Parker, R. 2000. La ciencia de las plantas. Paraninfo S.A. Thomson Editores, España. sp

CULTIVO DE MORERA (Morus spp) Y SU USO EN LA ALIMENTACIÓN ANIMAL
Conocimiento para cultivar la vida

Esta es una producción en el marco del Proyecto PLANTÓN – PACAYAS (INIA, España-INTA, CR)
Teléfono: (506) 2231-3991, web: www.inta.go.cr; www.platicar.go.cr